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ABSTRACT 

SENSE has been widely accepted and extensively studied in 
the community of parallel MRI. Although many 
regularization approaches have been developed to address 
the ill-conditioning problem for Cartesian SENSE, fewer 
efforts have been made to address this problem when the 
sampling trajectory is non-Cartesian. For non-Cartesian 
SENSE using the iterative conjugate gradient method, ill-
conditioning can degrade not only the signal-to-noise ratio, 
but also the convergence behavior. This paper proposes a 
regularization technique for non-Cartesian SENSE using a 
multiscale wavelet model. The technique models the desired 
image as a random field whose wavelet transform 
coefficients obey a generalized Gaussian distribution. The
effectiveness of the proposed method has been validated by 
in vivo experiments.  

Index Terms— Spiral SENSE, multiscale model-based 
regularization, wavelet transformation

1. INTRODUCTION 
Parallel MRI is an advanced fast imaging method to 

reduce k-space data acquisition time without the need for 
improved gradient performance. Several reconstruction 
methods have been established in order to unfold the aliased 
images caused by sampling at a rate lower than Nyquist rate 
during acquisition [1,2]. Among them, SENSE (SENSitivity 
Encoding) [1] has been accepted as one of the standard 
reconstruction methods due to its theoretical optimality. In 
the basic SENSE reconstruction, the underlying inverse 
solution can be ill-conditioned to a degree that increases 
with reduction factor. Tikhonov regularization has been 
successfully and widely used to reduce the problem due, in 
part, to the existent of a closed form solution [3,4]. It can be 
easily applied to the direct matrix inversions used for 
uniform Cartesian trajectories [1] and the iterative conjugate 
gradient (CG) method for other trajectories [5]. However, 
Tikhonov regularization is known to blur sharp edges. Some 
recent work has applied edge-preserving regularization 
techniques to SENSE reconstruction [6,7]. Due to the 
piecewise smooth prior, the reconstruction can have blocky 
effects due to loss of detailed structures. There is a need to 
further improve the SENSE regularization. 

In this paper, we propose a novel reconstruction 
method for non-Cartesian SENSE using a Bayesian 
approach. A critical challenge for Bayesian image 
reconstruction methods is the choice of prior models for 
images. Ideally, a good prior model should accurately 
reflect the smooth and textured regions as well as preserve 
edges of images. We model the images to be reconstructed 
as a random field whose wavelet coefficients obey a 
generalized Gaussian (GG) distribution [8-10]. It has been 
shown that such a multiscale stochastic prior model can 
satisfactorily represent both smooth and sharp features of 
images [8]. We apply this prior model to spiral SENSE 
reconstruction and demonstrate that the image quality of the 
proposed method is superior to that of the CG-SENSE with 
Tikhonov regularization. 

2. FORMULATION OF SENSE RECONSTRUCTION 
In SENSE, the imaging equation can be formulated as a 

linear operation of the transverse magnetization image [1,5]: 
dEf ,                                          (1)

where  is the vector formed from all k-space data acquired 
at all channels, and f  is the unknown vector formed from 
the desired full field of view (FOV) image to be solved for, 
both with a lexicographical column ordering of the two-
dimensional array components. The encoding matrix E
consists of the product of Fourier encoding with subsampled 
k-space and coil-specific sensitivity modulation over the 
image, i.e. 

d

)(2
},,{ nl

rki
nml rse nmE

ls

)( Efd

,                   (2)

where  denotes the sensitivity function of the lth channel, 
m and n denote the indices for the k-space data and image 
pixels, respectively.  

In presence of additive Gaussian noise in MR data 
measurement [11], according to the imaging equation (1), 

 obeys a zero-mean Gaussian distribution whose 
covariance depends on noise correlations: 
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SENSE reconstruction obtains the image f  using the 
maximum likelihood estimation. 
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3. PROPOSED MULTISCALE MODEL-BASED 
SENSE RECONSTRUCTION METHOD 

3.1. Bayesian Formulation 
In Bayesian framework, the maximum a posteriori 

(MAP) estimation is used to incorporate the prior 
information when the statistics of the parameters to be 
estimated is given. In this case, the MAP estimation of the 
image is given by [12]: 

,MAP arg max ( )p
f
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f

d f f ,                        (4) 

where  is the prior representing the random field of 
the image. The accuracy of the prior in modeling the desired 
image is crucial in MAP estimation --- the additional 
information can improve the image quality but any bias may 
lead to image artifacts.  
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2.2. Multiscale Wavelet Model 
We use a multiscale wavelet model for image prior, 
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 where  is the (m,n)th coefficients of the wavelet 
transform of the image with superscript (i) being 0 when 
(m,n) is the scaling coefficient and 1, 2, or 3 when (m,n) is 
the wavelet coefficient at the vertical, horizontal, or 
diagonal orientations, respectively, and subscript j denoting 
the scale.  Figure 1 (a) shows the coefficients image after 3-
level wavelet decomposition. These coefficients are 
assumed to take a generalized Gaussian (GG) distribution 
[9, 10] as 
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where the power 0  is a parameter that determines 

the tail behavior of the density function and 

p
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 is a scale 
parameter similar to the standard deviation of a Gaussian 
density. We denote zero mean distribution as .
Equation (6) is the Laplacian density for p = 1, and the 
Gaussian density for p = 2. The parameter 

( ), , )i
jk p

jk  varies for 
each scale and wavelet coefficients in theory, but makes the 
model too complex to be useful in practice. Fortunately, the 
models proposed in Ref. [8] greatly simplify the choice of 
the parameter ( )i

jk , and make it possible to analyze the 
scale-to-scale structures and the orientation-dependent 
structure of images (see [8] for details). We use the first 
model in [8], where the scaling coefficients w m  are 
i.i.d. (

(0)
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 and the wavelet coefficients are i.i.d. with 

exponentially decreasing variances, i.e., 
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. This model is 
equivalent to a deterministic modeling of the image as a 
member of a Besov space. There are only two independent 
parameters in this model, which are chosen to be 

 as suggested in Ref. [8].  

Fig. 1: (a) Image of multiscale coefficients and (b) the 
corresponding regularization parameters after 3-level wavelet 
decomposition.

2.3. Multiscale SENSE Reconstruction Algorithm 
Plugging the multiscale wavelet prior into Eq. (4), the MAP 
estimation becomes the regularized reconstruction given as
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where  denotes the wavelet transform matrix,  is a 
diagonal matrix whose elements are regularization 
parameters at different scales and orientations, and ||
denotes the Lp norm. Equivalently, the equation can be 
rewritten as
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where , and the regularization parameters from the 
diagonals of  are  with ( ) 2 ( )(2 / ( ) )i i p
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3.2. Implementation 
When the Lp-norm terms in Eq. (8) can not be 
differentiated, we have to resort to the smooth 
approximation to the p-norm as the following 
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where ,m n is a stabilization constant and w  denotes 
the element of the vector w. We use lagged diffusivity fixed 
point algorithm [13] for the optimization of Eq. (8). 
Defining the objective function in Eq. (8) as 
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the gradient  and Hessian  of the objective 
function to be minimized are given as 
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is a diagonal matrix with elements being the value in the 
bracket. The fixed point algorithm is given as follows. 
Algorithm 
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 initial image 
for i = 0,1, 2, ..., N { 

( )i iL L w

i ig = H Hw
;                            

;   % gradient pH H- H d + L w

i pHH = H H + L ; % approximation Hessian 
1

i i
-s = -H gi ;          % quasi-Newton step 

i i+1w = w + s ;     % update approximate solution 
       }
The quasi-Newton step in the fixed-point algorithm can be 
implemented using CG iterations.  Specifically, each fixed-
point iteration includes several inner CG iterations. To 
speed up the computation, nonuniform fast Fourier 
transform (NUFFT) [14] has been employed to calculate the 
sensitivity encoding for a non-Cartesian trajectory. 

4. EXPERIMENT RESULTS 
 

In vivo human spiral data have been acquired on a GE 3T 
scanner (GRE sequence, coil Num = 8, TE = 3.5ms, TR = 
2s, flip angle = 90, FOV = 24cm, slice Thickness = 4.0mm, 
spacing = 1.0mm, matrix size = 256x256, slice num = 8, 
interleave num = 24, repetition = 10, spiral out). To simulate 
the reduced acquisition in parallel imaging, we manually 
selected 3, 4, 6, 8 out of 24 interleaves, corresponding to 
reduction factor R= 8, 6, 4, 3, respectively. In our 
implementation, we used p=1 (L1 norm), 1.2 , 1 0.1 ,

2 0.2 , and 0.01 . We show the result for R = 4 in 
Fig. 2(c) after 40 iterations. For comparison, we also show 
the sum of square (SoS) reconstruction using full data as 
well as the CG SENSE reconstruction for R = 4 [5] after 20 
iterations (corresponding to the best result as showed in Fig. 
3) in Fig. 2(a) and (b), respectively. In addition, we also 
show the result from CG SENSE with Tikhonov 
regularization [4] after 30 iteration in Fig. 2(d), which tends 
to smooth out fine structures of the image. Each iteration for 
the proposed method takes 4.2 seconds on a 2.8GHz 
CPU/512MB RAM PC, which is about the same as the 
running time of CG and regularized CG. 

Fig. 2: SENSE reconstruction from in vivo data acquired with an 
8- channel head coil and a 4x reduction factor. (a) SoS, (b) CG 
SENSE after 20 iteration, (c) the proposed method after 40 
iterations and (d) Tikhonov regularization after 30 iterations. 

We also compared the convergence curves of the proposed 
and the CG methods in Fig. 3 where the normalized mean 
squared errors (NMSE) were plotted as a function of the 
number of iterations at different reduction factors. It is seen 
that both the proposed method and the Tikhonov 
regularization give strictly deceasing NMSEs, but the 
former converges to lower errors. The results suggest that 
the proposed method can effectively addressed the so-called 
semi-convergence problem associated with CG approach 
[15], and is superior to Tikhonov regularization especially 
advantageous when the reduction factor is high. 

5.  DISCUSSION  
The proposed method has some desirable features. The 
multiscale transformation provides freedom to manipulate 
certain frequency components of the image as Eq. (8) or (10) 
suggests. Although it is at the cost of complicated choice of 
regularization parameters, the model used here has only five 
independent parameters. The underlying optimization 
problem can be efficiently solved using the fixed-point 
algorithm, which is easy to implement and robust compared 
with other numerical method like primal-dual interior point 
solver [16]. The proposed method was applied to the spiral 
trajectory in this work, but is also applicable to arbitrary 
trajectories. When the parameter p is equal to 1, the 
proposed method can be regarded as an approximation of 
compressed sensing [17], where the spiral encoding matrix 
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